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Abstract—Under study is a system of linear differential equations of neutral type with several delays
of the argument. We obtain the conditions on the matrix coefficients of the system under which
all solutions decrease with an exponential rate at infinity. Using some functionals of Lyapunov–
Krasovskii type, the uniform estimates of solutions are established.
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In the paper we consider a system of linear differential equations with several delays of the argument

d

dt
(y(t) + Dy(t − τ)) = Ay(t) + By(t − τ) +

p∑

j=1

Bjy(t − τj), t > τ > τj > 0, (1)

where A, B, Bj , and D are constant (n × n)-matrices; τ and τj > 0 are delay parameters. For D �= 0
such equations are usually called equations of neutral type. We study the conditions on the matrix
coefficients of (1) under which all solutions decrease with an exponential rate as t → ∞. The power of the
exponents characterizing the decay rate is calculated using estimates of some functionals of Lyapunov–
Krasovskii type.

1. THE PROBLEM OF SOLUTION STABILITY
TO THE EQUATIONS OF NEUTRAL TYPE

For some classes of systems of linear delay differential equations, some conditions are well-known for
the asymptotic stability of the zero solution that are formulated in terms of the roots of quasipolynomials
or in the form of matrix inequalities (for example, see [1–4]). In particular, it follows from those results
that under certain conditions all solutions of linear systems with constant coefficients stabilize with an
exponential rate as t → ∞. In practice, however, calculation the power of the exponents characterizing
the decay rate of solutions at infinity is a challenge. In a number of works (for instance, see [5–10]),
some ways were proposed for obtaining the explicit estimates of stabilization rate of the solutions.
These methods are based on the use of some modifications of the Lyapunov–Krasovskii functionals.
In particular, in [8–10], to obtain some uniform estimates of solutions to the systems of the form (1) with
one delay parameter τ > 0 the following functional was used:

v(t, y) = 〈H(y(t) + Dy(t − τ)), (y(t) + Dy(t − τ))〉 +

t∫

t−τ

〈K(t − s)y(s), y(s)〉 ds, (2)
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where

H = H∗ > 0, K(s) = K∗(s) ∈ C1[0, τ ], K(s) > 0,
d

ds
K(s) < 0, s ∈ [0, τ ]. (3)

We give a result for a solution to the initial value problem

d

dt
(y(t) + Dy(t − τ)) = Ay(t) + By(t − τ), t > τ,

y(t) = ϕ(t) for t ∈ [0, τ ], y(τ + 0) = ϕ(τ), ϕ(t) ∈ C1[0, τ ],
(4)

obtained by the use of the functional (2) and follows from [10].

Theorem 1. Suppose that there exist matrices H,K(s) ∈ C1[0, τ ] satisfying (3) and the matrix

C = −

⎛

⎝ HA + A∗H + K(0) HB + A∗HD

B∗H + D∗HA D∗HB + B∗HD − K(τ)

⎞

⎠

is positive definite. Let c1 > 0 be the minimal eigenvalue of the matrix C and k > 0 be the maximal
number such that

d

ds
K(s) + kK(s) ≤ 0, s ∈ [0, τ ].

Then for a solution y(t) to the initial value problem (4) the following estimates hold:

(1) If ‖D‖ < q−1 with q = exp (γτ/(2‖H‖)) then

‖y(t)‖ ≤ exp
(
−γ(t − τ)

2‖H‖

)
(M(1 − q‖D‖)−1 + 1)Φ, t > τ,

where

γ = min
{

c1

1 + ‖D‖2
, k‖H‖

}
,

M =
√

‖H−1‖(2 ‖H‖ (1 + ‖D‖2) + τK), K = max
s∈[0,τ ]

‖K(s)‖, Φ = max
s∈[0,τ ]

‖ϕ(s)‖.

(2) If ‖D‖ = q−1 then

‖y(t)‖ ≤ exp
(
−γ(t − τ)

2‖H‖

)(
M

t

τ
+ 1

)
Φ, t > τ.

(3) If q−1 < ‖D‖ ≤ 1 then

‖y(t)‖ ≤ exp
(

(t − τ)
τ

ln ‖D‖
) (

Mq(q‖D‖ − 1)−1 + 1
)
Φ, t > τ.

Analyzing the proof of the estimates in Theorem 1 in [10], it is easy to generalize this result changing
the condition ‖D‖ < 1 for the condition of belonging the spectrum of the matrix D to a unit circle.

In the present paper, we continue the studies of [8–10] and, under certain conditions on the matrix
coefficients of (1), obtain the uniform estimates of the norms of solutions to the initial value problem

d

dt
(y(t) + Dy(t − τ)) = Ay(t) + By(t − τ) +

p∑

j=1

Bjy(t − τj), t > τ > τj > 0,

y(t) = ϕ(t) for t ∈ [0, τ ], y(τ + 0) = ϕ(τ), ϕ(t) ∈ C1[0, τ ].

(5)

It will follow from these estimates that solutions to (5) decrease with an exponential rate as t → ∞.
In the sequel, we will assume that spectrum σ(D) of the matrix D belongs to the unit circle.
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While estimating the solutions to (5), we will use the functional of Lyapunov–Krasovskii type:

V (t, y) = 〈H(y(t) + Dy(t − τ)), (y(t) + Dy(t − τ))〉

+

t∫

t−τ

〈K(t − s)y(s), y(s)〉 ds +
p∑

j=1

t∫

t−τj

〈Kj(t − s)y(s), y(s)〉 ds, t ≥ τ, (6)

where the matrices H,K(s) ∈ C1[0, τ ] satisfy (3) and the matrices Kj(s) = K∗
j (s) ∈ C1[0, τj ] are such

that

Kj(s) > 0,
d

ds
Kj(s) < 0, s ∈ [0, τj ], j = 1, . . . , p. (7)

2. ESTIMATES OF THE MODIFIED LYAPUNOV–KRASOVSKII FUNCTIONAL
Here we obtain an inequality for the functional (6) considered on solutions to the initial value

problem (5). In Section 3, this inequality will be used to obtain some uniform estimates of solutions
to the system (1).

Theorem 2. Let there exist matrices H,K(s) ∈ C1[0, τ ] and the matrices Kj(s) ∈ C1[0, τj ],
j = 1, . . . , p, satisfying the conditions (3) and (7) respectively. Moreover, assume that, for some
k > 0 and kj > 0, the inequalities hold

d

ds
K(s) + kK(s) ≤ 0, s ∈ [0, τ ],

d

ds
Kj(s) + kjKj(s) ≤ 0, s ∈ [0, τj ], j = 1, . . . , p.

Suppose that the compound matrix

C = −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

HA + A∗H + K(0) +
p∑

j=1
Kj(0) HB + A∗HD HB1 . . . HBp

B∗H + D∗HA D∗HB + B∗HD − K(τ) D∗HB1 . . . D∗HBp

B∗
1H B∗

1HD −K1(τ1) . . . 0
...

...
...

. . .
...

B∗
pH B∗

pHD 0 . . . −Kp(τp)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is nonnegative definite and for every (p + 2)n-dimensional vector

U =
(
u�, (u0)�, (u1)�, . . . , (up)�

)�

the following holds:

〈CU,U〉 ≥ c(‖u‖2 + ‖u0‖2), (8)

where c > 0 is a constant. Then, for the functional (6) considered on a solution to the initial value
problem (5), we have the estimate

V (t, y) ≤ exp
(
−γ(t − τ)

‖H‖

)(
〈H(ϕ(τ) + Dϕ(0)), (ϕ(τ) + Dϕ(0))〉

+

τ∫

0

〈K(τ − s)ϕ(s), ϕ(s)〉 ds +
p∑

j=1

τ∫

τ−τj

〈Kj(τ − s)ϕ(s), ϕ(s)〉 ds

)
, t > τ, (9)

where

γ = min
{

c

1 + ‖D‖2
, k‖H‖, k1‖H‖, . . . , kp‖H‖

}
. (10)
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Proof. Let y(t) be a solution to (5). Consider the functional (6) on this solution. Differentiating it, after
simple manipulations we have

d

dt
V (t, y) ≡

〈(
HA + A∗H + K(0) +

p∑

j=1

Kj(0)
)

y(t), y(t)

〉

+ 〈(HB + A∗HD)y(t − τ), y(t)〉 + 〈(B∗H + D∗HA)y(t), y(t − τ)〉

+ 〈(D∗HB + B∗HD − K(τ))y(t − τ), y(t − τ)〉 +
p∑

j=1

〈HBjy(t − τj), y(t)〉

+
p∑

j=1

〈B∗
j Hy(t), y(t − τj)〉 +

p∑

j=1

〈D∗HBjy(t − τj), y(t − τ)〉

+
p∑

j=1

〈
B∗

j HDy(t − τ), y(t − τj)
〉
−

p∑

j=1

〈Kj(τj)y(t − τj), y(t − τj)〉

+

t∫

t−τ

〈
d

dt
K(t − s)y(s), y(s)

〉
ds +

p∑

j=1

t∫

t−τj

〈
d

dt
Kj(t − s)y(s), y(s)

〉
ds.

Therefore, taking into account the definition of C, we obtain

d

dt
V (t, y) +

〈
C

⎛

⎜⎜⎝

y(t)
y(t−τ)
y(t−τ1)

...
y(t−τp)

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

y(t)
y(t−τ)
y(t−τ1)

...
y(t−τp)

⎞

⎟⎟⎠

〉
−

t∫

t−τ

〈
d

dt
K(t − s)y(s), y(s)

〉
ds

−
p∑

j=1

t∫

t−τj

〈
d

dt
Kj(t − s)y(s), y(s)

〉
ds ≡ 0. (11)

According to the conditions of the Theorem, the matrix C is nonnegative definite and satisfies (8). Hence,

〈
C

⎛

⎜⎜⎝

y(t)
y(t−τ)
y(t−τ1)

...
y(t−τp)

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

y(t)
y(t−τ)
y(t−τ1)

...
y(t−τp)

⎞

⎟⎟⎠

〉
≥ c(‖y(t)‖2 + ‖y(t − τ)‖2).

Therefore, by analogy with [10], we have the inequality

〈
C

⎛

⎜⎜⎝

y(t)
y(t−τ)
y(t−τ1)

...
y(t−τp)

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

y(t)
y(t−τ)
y(t−τ1)

...
y(t−τp)

⎞

⎟⎟⎠

〉
≥ c

(1 + ‖D‖2)‖H‖〈H(y(t) + Dy(t − τ)), (y(t) + Dy(t − τ))〉.

Now, taking into account the conditions on the matrices K(s) and Kj(s) from (11), we obtain the
estimate

d

dt
V (t, y) +

c

(1 + ‖D‖2)‖H‖〈H(y(t) + Dy(t − τ)), (y(t) + Dy(t − τ))〉

+ k

t∫

t−τ

〈K(t − s)y(s), y(s)〉 ds +
p∑

j=1

kj

t∫

t−τj

〈Kj(t − s)y(s), y(s)〉 ds ≤ 0.
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Then, by (10), we have

d

dt
V (t, y) +

γ

‖H‖V (t, y) ≤ 0, t ≥ τ.

Therefore,

V (t, y) ≤ exp
(
−γ(t − τ)

‖H‖

)
V (τ, ϕ), t ≥ τ.

According to the definition of (6), this inequality coincides with (9).
The proof of Theorem 2 is complete.

Corollary 1. Let the conditions of Theorem 2 be satisfied. Then for a solution y(t) to (5) the
estimate holds

‖y(t) + Dy(t − τ)‖ ≤ exp
(
−γ(t − τ)

2‖H‖

)√
‖H−1‖V (τ, ϕ), t > τ, (12)

where γ > 0 is defined by (10).

The proof is immediate from (9) and the definition of (6).

3. ESTIMATES OF SOLUTIONS TO EQUATIONS OF NEUTRAL TYPE

The estimates, established in Section 2, can be used by analogy with [10] for proving an asymptotic
stability of the zero solution to the system of equations of neutral type (1) and obtaining some estimates
of the solutions. For this, we need the following discrete analogs of the Lyapunov and Krein theorems on
the properties of solutions to the discrete Lyapunov equation:

H̃ − D∗H̃D = I (13)

(for instance, see [11, 12]).

Theorem 3. Let the spectrum of the matrix D be in the unit circle. Then there exists a unique
solution H̃ = H̃∗ > 0 to (13) and

‖Dl‖ ≤ (1 − 1/‖H̃‖)l/2
√

μ(H̃), l = 1, 2, . . . , (14)

where μ(H̃) is the condition number of H̃ .

Using Corollary 1, we give some estimates for the norm of a solution to the initial value problem (5).

Theorem 4. Let the conditions of Theorem 2 be satisfied and let H̃ = H̃∗ > 0 be a solution to
the equation (13). Then for a solution y(t) to (5) the following take place:

(a) if (1 − 1/‖H̃‖)1/2 < q−1 with q = exp(γτ/(2‖H‖)) then

‖y(t)‖ ≤ exp
(
−γ(t − τ)

2‖H‖

)√
μ(H̃)

( √
‖H−1‖V (τ, ϕ)

1 − (1 − 1/‖H̃‖)1/2q

)

+ (1 − 1/‖H̃‖)(t−τ)/(2τ)
√

μ(H̃)Φ, t > τ, (15)

where Φ = max
s∈[0,τ ]

‖ϕ(s)‖;

(b) if (1 − 1/‖H̃‖)1/2 = q−1 then

‖y(t)‖ ≤ exp
(
−γ(t − τ)

2‖H‖

)
t

τ

√
μ(H̃)

√
‖H−1‖V (τ, ϕ)

+ (1 − 1/‖H̃‖)(t−τ)/2τ
√

μ(H̃)Φ, t > τ ; (16)
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(c) if q−1 < (1 − 1/‖H̃‖)1/2 then

‖y(t)‖ ≤
(

1 − 1

‖H̃‖

)(t−τ)/(2τ) √
μ(H̃)

( √
‖H−1‖V (τ, ϕ)

1 − (1 − 1/‖H̃‖)−1/2q−1
+ Φ

)
, t > τ. (17)

Proof. Let Y (t) = y(t) + Dy(t− τ). Then, obviously, for t ∈ [lτ, (l + 1)τ), the vector-function y(t) can
be written as

y(t) = Y (t) − DY (t − τ) + · · · + (−1)l−1Dl−1Y (t − (l − 1)τ) + (−1)lDlϕ(t − lτ).

Hence, we have the estimate

‖y(t)‖ ≤ ‖Y (t)‖ + ‖D‖ · ‖Y (t − τ)‖ + · · · + ‖Dl−1‖ · ‖Y (t − (l − 1)τ)‖ + ‖Dl‖Φ.

Therefore, using the inequalities (12) and (14) we obtain

‖y(t)‖ ≤ exp
(
−γ(t − τ)

2‖H‖

)√
‖H−1‖V (τ, ϕ)

+

(
1 − 1

‖H̃‖

)1/2 √
μ(H̃) exp

(
−γ(t − 2τ)

2‖H‖

) √
‖H−1‖V (τ, ϕ)

+ · · · +
(

1 − 1

‖H̃‖

)(l−1)/2 √
μ(H̃) exp

(
−γ(t − lτ)

2‖H‖

)√
‖H−1‖V (τ, ϕ)

+

(
1 − 1

‖H̃‖

)l/2 √
μ(H̃)Φ,

and then we have

‖y(t)‖ ≤ exp
(
−γ(t − τ)

2‖H‖

)⎛

⎝
l−1∑

j=0

⎛

⎝
(

1 − 1

‖H̃‖

)1/2

q

⎞

⎠
j⎞

⎠
√

μ(H̃)
√

‖H−1‖V (τ, ϕ)

+

(
1 − 1

‖H̃‖

)(t−τ)/(2τ) √
μ(H̃)Φ, t ∈ [lτ, (l + 1)τ). (18)

Consider the first case: (1 − 1/‖H̃‖)1/2 < q−1. Represent t as t = lτ + s, where s ∈ [0, τ). Then,
from the estimate (18) we infer

‖y(t)‖ ≤ exp
(
−γ(t − τ)

2‖H‖

)⎛

⎝
∞∑

j=0

⎛

⎝
(

1 − 1

‖H̃‖

)1/2

q

⎞

⎠
j⎞

⎠
√

μ(H̃)
√

‖H−1‖V (τ, ϕ)

+

(
1 − 1

‖H̃‖

)(t−τ)/(2τ) √
μ(H̃)Φ

= exp
(
−γ(t − τ)

2‖H‖

)√
μ(H̃)

√
‖H−1‖V (τ, ϕ)

(
1

1 − (1 − 1/‖H̃‖)1/2q

)

+

(
1 − 1

‖H̃‖

)(t−τ)/(2τ) √
μ(H̃)Φ,

i.e., (15) is proved.
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Consider the second case: (1 − 1/‖H̃‖)1/2 = q−1. Let t = lτ + s, where s ∈ [0, τ). Then, obviously,
from (18) we obtain

‖y(t)‖ ≤ exp
(
−γ(t − τ)

2‖H‖

)√
μ(H̃)

√
‖H−1‖V (τ, ϕ)l +

(
1 − 1

‖H̃‖

)(t−τ)/(2τ) √
μ(H̃)Φ.

The inequality (16) is immediate from this estimate.

Consider now the third case: q−1 < (1 − 1/‖H̃‖)1/2. Representing t = lτ + s with s ∈ [0, τ), from
the estimate (18) we have

‖y(t)‖ ≤ exp
(
−γ(t − τ)

2‖H‖

)((
1 − 1

‖H̃‖

)1/2

q

)l−1( ∞∑

j=0

((
1 − 1

‖H̃‖

)1/2

q

)−j)

×
√

μ(H̃)
√

‖H−1‖V (τ, ϕ) +

(
1 − 1

‖H̃‖

)(t−τ)/(2τ) √
μ(H̃)Φ

= exp
(
−γ(t − τ)

2‖H‖

)((
1 − 1

‖H̃‖

)1/2

q

)l√
μ(H̃)

√
‖H−1‖V (τ, ϕ)

×
(

1

(1 − 1/‖H̃‖)1/2q − 1

)
+

(
1 − 1

‖H̃‖

)(t−τ)/(2τ)√
μ(H̃)Φ.

Hence, taking into account 0 ≤ s < τ , we obtain

‖y(t)‖ ≤ exp
(

γ(τ − s)
2‖H‖

)(
1 − 1

‖H̃‖

)l/2 √
μ(H̃)

√
‖H−1‖V (τ, ϕ)

×
(

1

(1 − 1/‖H̃‖)1/2q − 1

)
+

(
1 − 1

‖H̃‖

)(t−τ)/(2τ)√
μ(H̃)Φ

≤
(

1 − 1

‖H̃‖

)(t−τ)/(2τ)√
μ(H̃)

( √
‖H−1‖V (τ, ϕ)

1 − (1 − 1/‖H̃‖)−1/2q−1
+ Φ

)
,

i.e., the inequality (17) is proved.

The proof of Theorem 4 is complete.

Corollary 2. Let the conditions of Theorem 4 be satisfied. Then the zero solution to the system
of equations (1) is asymptotically stable.

The proof is immediate from (15)–(17) and the definition (6).

Remark. As it follows from (15)–(17) solutions to (1) decrease with an exponential rate as t → ∞.
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